DUAL BANACH LATTICES AND BANACH LATTICES WITH THE RADON-NIKODYM PROPERTY

BY

MICHEL TALAGRAND[†]

ABSTRACT

We construct a separable dual Banach lattice E such that no non-trivial order interval of its dual is weakly compact. Hence E has the Radon-Nikodym property without being in some sense a dual in a natural way.

I. Introduction

It has been an open problem for a long time whether every separable Banach space with the Radon-Nikodym Property (RNP - see [2]) is a subspace of a separable dual Banach space. It is known now that the answer is negative [1], [4]. These two examples are very different, but both of them are far from being a Banach lattice. In fact, it does not seem to be even known today if a separable Banach lattice with RNP is a dual (and this question will not be answered here). An interesting idea in this direction is due to H. P. Lotz [3], along the following lines. Let E be a separable Banach lattice satisfying RNP. Let F be the set of xin the dual E^* of E such that [0, |x|] is weakly compact. Then F is a Banach lattice. Lotz shows that if F is big enough, i.e. $\sigma(E, F)$ is Hausdorff, then $E = F^*$. Hence F is a natural candidate as a predual of E. The purpose of this paper is to describe an example (whose existence is claimed in [5]) of a separable Banach lattice E (which is a dual) such that $F = \{0\}$. Hence, if E is a separable Banach lattice satisfying RNP, there does not seem to exist a natural candidate for a predual. We feel that this means both that, in general, E is not likely to be a dual, and that the problem is not likely to be easy.

Received January 30, 1980

[†] The final draft of this paper was written while the author held a grant from NATO to visit the Ohio State University.

BANACH LATTICES

II. The example

THEOREM. There exists a separable Banach lattice E with the following two properties:

(a) E is a dual (and hence has RNP);

(b) if $x \in E^*$, $x \neq 0$, then there exists a sublattice isomorphic to l^{∞} , which unit ball is contained in [-|x|, |x|] (and hence [0, |x|] is not weakly compact).

PROOF. 1st Step. Construction. Let $K = \{0, 1\}^{\mathbb{N}}$ be the Cantor set, and λ its canonical measure. Let $(A_k^n)_{n \ge 0, k \ge 0}$ be a family of clopen sets of K, which are independent for λ , and such that for all n and k, $\lambda(A_k^n) = 2^{-n}$. (The existence of such a family is obvious if one remembers that K is isomorphic to $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$.) Let $y_{n,k} = 2^n \chi_{A_k^n}$. Hence $||y_{n,k}||_1 = 1$. Let $L_1 = L_1(\lambda)$, $L_2 = L_2(\lambda)$. Let

$$W = \left\{z \in L_1, \exists x \in L_2^+, \exists a_{n,k} \ge 0, \sum_{n,k} a_{n,k} < +\infty, |z| \le x + \sum_{n,k} a_{n,k}y_{n,k}\right\}.$$

For $z \in E$, let $||z||_{\varepsilon} = \inf\{||x||_{2} + \sum_{n,k} a_{n,k}\}$, where the inf is taken over the families $x \in L_{2}^{+}$, $(a_{n,k})$ with $|z| \leq x + \sum_{n,k} a_{n,k}y_{n,k}$. It is standard to show that E is a Banach lattice.

Let us first show that $\mathscr{C}(K)$ is dense in E. Since $\| \|_{\infty}$ is stronger than $\| \|_{E}$ on $\mathscr{C}(K)$, this will show that E is separable. Let $z \in E$. We have $|z| \leq x + \sum_{n,k} a_{n,k} y_{n,k}$, where $x \in L_2$ and $\sum_{n,k} a_{n,k} < +\infty$. Hence, $z = z_1 + z_2$, where $|z_1| \leq x, z_2 \leq \sum_{n,k} a_{n,k} y_{n,k}$. Let $\varepsilon > 0$. Since $|z_1| \leq x, z_1 \in L_2$, there exists $t_1 \in \mathscr{C}(K)$ with $\| z_1 - t_1 \|_2 \leq \varepsilon/3$. Let I be a finite subset of $\mathbb{N} \times \mathbb{N}$ such that $\sum_{(n,k) \notin I} a_{n,k} \leq \varepsilon/3$. We have $z_2 = z_3 + z_4$, where $|z_3| \leq \sum_{n,k \in I} a_{n,k} y_{n,k}, |z_4| \leq \sum_{(n,k) \notin I} a_{n,k} y_{n,k}$. Since z_3 is bounded, there exist $t_3 \in \mathscr{C}(K)$ with $\| z_3 - t_3 \|_2 \leq \varepsilon/3$. Now

 $|z - t_1 - t_3| \le |z_1 - t_1| + |z_3 - t_3| + |z_4|$

where $|||z_1 - t_1| + |z_3 - t_3|||_2 \le 2\varepsilon/3$, $|z_4| \le \sum_{(n,k) \ne I} a_{n,k} y_{n,k}$ and $\sum_{(n,k) \ne I} a_{n,k} \le \varepsilon/3$, so $||z - t_1 - t_3||_E \le \varepsilon$.

Next, we have $L_2 \hookrightarrow E \hookrightarrow L_1$, where each of the injections is positive, of norm ≤ 1 (for the second one, this follows from $||x||_1 \leq ||x||_2$, $||y_{n,k}||_1 = 1$). Hence, for each $n, k, 1 = ||y_{n,k}||_1 \leq ||y_{n,k}||_E \leq 1$, so $||y_{n,k}||_E = 1$. Since $L_2 \hookrightarrow E$, it is clear that E' can be identified with those $t \in L_2$ for which there exist a constant M such that $\int |t| y_{n,k} \leq M$ for all n, k. In particular, $\mathscr{C}(K) \hookrightarrow E^*$, and since the norm of E is stronger than the norm of L_1 , this injection is continuous when $\mathscr{C}(K)$ is provided with the L_{∞} norm. This shows that the image of $\mathscr{C}(K)$ in E^* is separable.

2nd Step. We are going to show that E is the dual of the closure of the image of $\mathscr{C}(K)$ in E^* . Since this image is separable, it is enough to show that each sequence (z^p) in the unit ball of E has a subsequence which converges for $\sigma(E, \mathscr{C}(K))$. (Hence the unit ball of E will be $\sigma(E, \mathscr{C}(K))$ -compact.) For each p, one can write $z^p = z_1^p + z_2^p$, where $z_1^p \in L_2$, $|z_2^p| \leq \sum_{n,k} a_{n,k}^p y_{n,k}$ and $||z_1^n||_2 + \sum_{n,k} a_{n,k}^p \leq 1 + 2^{-p}$. By taking a subsequence, one can assume that $||z_1^n||$ converges, to α say, that z_1^p converges weakly in L_2 to z_1 (with $||z_1|| \leq \alpha$) and that for each n, k $(a_{n,k}^p)_p$ converges to $a_{n,k}$. One can by taking another subsequence assume that $a_{n,k}^p \leq a_{n,k} + 2^{-n-k-p}$ for n, $k \leq p$. For each p, one can write $z_2^p =$ $\sum_{(n,k)\in I_p} z_{n,k}^p + z_3^p$ where $I_p = [0, p] \times [0, p], |z_{n,k}^p| \leq a_{n,k}^p y_{n,k}, |z_3^n| \leq \sum_{(n,k) \neq I_p} a_{n,k}^p y_{n,k}$. It is also possible to assume that $z_{n,k}^p \to z_{n,k}$ say in the $\sigma(L_1, \mathscr{C}(K))$ topology. Of course, $|z_{n,k}| \leq a_{n,k} y_{n,k}$.

We show now that $\sum_{(n,k)\in I_p} z_{n,k}^p \to \sum_{n,k} z_{n,k}$ for $\sigma(E, \mathscr{C}(K))$. For $f \in \mathscr{C}(K)$, we have for any p_0

$$\left| \sum_{(n,k)\in I_p} \int f z_{n,k}^p - \sum_{n,k} \int f z_{n,k} \right| \leq \|f\|_{\infty} \left(\sum_{(n,k)\in I_{p_0}} \int |z_{n,k}^p - z_{n,k}| + \sum_{\substack{(n,k)\notin I_{p_0} \\ (n,k)\in I_p}} a_{n,k}^p + \sum_{\substack{(n,k)\notin I_{p_0} \\ (n,k)\in I_p}} a_{n,k} + \sum_{\substack{(n,k)\notin I_{p_0} \\ (n,k)\in I_p}} a_{n,k} \right).$$

Since $a_{n,k}^{p} \leq a_{n,k} + 2^{-n-k-p}$ for $(n, k) \in I_{p}$, we have

$$\sum_{\substack{(n,k)\not\in I_{p_0}\\(n,k)\in I_n}}a_{n,k}^p\leq 2^{-p_0}+\sum_{(n,k)\not\in I_{p_0}}a_{n,k}.$$

So, if $\varepsilon > 0$ and we let p_0 be large enough such that $2^{-p_0} + \sum_{(n,k) \neq I_{p_0}} a_{n,k} \leq \varepsilon$, we have

$$\limsup_{p} \left| \int f \sum_{(n,k) \in J_{p}} z_{n,k}^{p} - \int f \sum_{n,k} z_{n,k} \right| \leq 2\varepsilon$$

which proves our assertion, since ε is arbitrary.

We still have to study the behavior of z_3^p . Let $\beta_p = \sum_{(n,k) \neq l_p} a_{n,k}^p$. We can suppose $\beta = \lim \beta_p$ exist. We can also suppose that z_3^p converges in $\mathscr{C}(K)^*$ to a measure μ . We have $\|\mu\| \leq \beta$. We are going to prove that $d\mu = hd\lambda$, where $\|h\| \leq \beta$. It is enough to show that $\mu(X) \leq \beta\lambda(X)$ for each clopen set X of L. Let p_0 be large enough such that for $(n, k) \notin I_{p_0}$, for $A_{n,k}$ independent of the coordinates of which X depends. It is enough to show that $|\int_X z_3^p| \leq \beta_p\lambda(X)$ for $p \geq p_0$. But it is clear that z_3^p is limit in L^1 of elements of the type $\sum_{(n,k) \notin I_p, (n,k) \in I_q} t_{n,k}$ where $|t_{n,k}| \leq a_{n,k}^p y_{n,k}$. But we have **BANACH LATTICES**

$$\int_{X} y_{n,k} = 2^{n} \lambda \left(X \cap A_{n,k} \right) = \lambda \left(X \right)$$

so the claim about μ follows. Hence $z_3^p \to h$ for $\sigma(E, \mathscr{C}(K))$. Of course, $z_1^p \to z_1$ for $\sigma(E, \mathscr{C}(K))$, since this topology is coarser on L_2 than $\sigma(L_2, L_2)$.

So $z \to z_1 + \sum_{n,k} z_{n,k} + h$ for $\sigma(E, \mathscr{C}(K))$, and norm of the limit is $\leq \alpha + \sum_{n,k} a_{n,k} + \beta$, and it is clear that this is ≤ 1 , since $\limsup_p \sum_{n,k} a_{n,k}^p \leq 1 - \alpha$. Hence *E* is the dual of the image of $\mathscr{C}(K)$ in *E**

Hence E is the dual of the image of $\mathscr{C}(K)$ in E^* .

3rd Step. Let $x \in E'$, x > 0. We have shown that there exist a measurable set $B \subset K$, and $\alpha > 0$ with $x \ge \alpha \chi_B$. In order to prove (b), we can hence assume that $x = \chi_B$. Let $\beta = \lambda (B)/3$.

For all n, $(1-2^{-n})^{2^n} \ge 1/2e \ge 1/6$. Let p be an integer such that $1/6^p \le \beta$. For all n, we have λ ($\bigcup_{k \le p2^n} A_{n,k}$) $\ge 1-\beta$. We are going to construct by induction a sequence (k_l) of integers, such that if l_0 is fixed such that $2^{-l_0} \le \beta$, the following condition is satisfied for all l, where $A_l = A_{l_0+l+1,k_l}$:

(1)
$$\lambda\left(A_{l}\cap\left(B\smallsetminus\bigcup_{l'< l}A_{l'}\right)\right)\geq\beta p^{-1}\lambda\left(A_{l}\right).$$

The first step being the same as the general step let us assume the construction has been done for l' < l. We have $\lambda (\bigcup_{l' < l} A_{l'}) \leq \sum_{l \geq l_0} 2^{-l_0 - l - 1} \leq 2^{-l_0} \leq \beta$ so if we set $C = B \setminus \bigcup_{l' < l} A_{l'}$, we have $\lambda(C) \geq 2\beta$. We claim there exist $k \leq p 2^{l_0 + l + 1}$ with $\lambda(A_{l_0 + l + 1, k} \cap C) \geq \beta p^{-1} \lambda(A_{l_0 + l + 1, k})$. For otherwise, we would have

$$\beta \leq \lambda \left(\bigcup_{k \leq p 2^{l_0+l+1}} A_{l_0+l+1,k} \cap C \right) \leq \sum_{k \leq p 2^{l_0+l+1}} \lambda \left(A_{l_0+l+1,k} \cap C \right)$$

$$$$

a contradiction. So if we take $k_i = k$, this concludes the construction.

Now, for each *l*, let $C_l = A_l \cap (B \setminus \bigcup_{i' < l} A_{i'})$. These sets are disjoint, and from (1) we get, if $y_l = y_{l+l_0+l,k_0}$.

$$\|\chi_{C_t}\|_{E'} \geq \int y_i \chi_{C_t} \geq \beta p^{-1}.$$

It is thus clear that the map $(t_n) \rightarrow \sum_l t_l \chi_{C_l}$ is an isomorphism of l^{∞} and a sublattice of E^* , whose unit ball is contained in [-|x|, |x|]. The proof is finished.

M. TALAGRAND

References

1. J. Bourgain and F. Delbaen, A special class of \mathscr{L}_x spaces, Acta Math., to appear.

2. J. Diestel, Geometry of Banach Spaces — Selected Topics, Lecture Notes in Math., Springer Verlag, pp. 485.

3. H. Lotz, The Radon-Nikodym property in Banach lattices, to appear.

4. P. W. McCartney and R. C. O'Brien, A separable Banach space with the Radon-Nikodym property which is not isomorphic to a subspace of a separable dual, to appear.

5. M. Talagrand, Sur la propriété de Radon-Nikodym dans les espaces de Banach reticulés, C. R. Acad. Sci. 288 (1979), 907-910.

Equipe d'Analyse — Tour 46

UNIVERSITÉ PARIS VI

4 PLACE JUSSIEU

75230 PARIS CEDEX 05 FRANCE